High-resolution peak demand estimation using generalized additive models and deep neural networks
نویسندگان
چکیده
This paper covers predicting high-resolution electricity peak demand features given lower-resolution data. is a relevant setup as it answers whether limited higher-resolution monitoring helps to estimate future loads when the data no longer available. That question particularly interesting for network operators considering replacing predictive models due economic considerations. We propose predict half-hourly minima and maxima of (every minute) load while model inputs are lower resolution (30 min). combine ptedictions generalized additive (GAM) deep artificial neural networks (DNN), which popular in forecasting. extensively analyze prediction models, including input parameters’ importance, focusing on load, weather, seasonal effects. The proposed method won competition organized by Western Power Distribution, British distribution operator. In addition, we provide rigorous evaluation study that goes beyond frame models’ robustness. results show methods superior benchmark concerning out-of-sample root mean squared error (RMSE). holds regarding month supplementary study, an additional eleven months. Overall, our combination reduces RMSE 57.4% compared benchmark.
منابع مشابه
Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملSpam Detection using Generalized Additive Neural Networks
During the last decade the number of spam messages sent has increased significantly. These undesired emails place a heavy burden on end users and email service providers. As a result, a tenacious struggle to outsmart each other exists between people who send spam and the spam filter providers. Constant innovation is therefore of vital importance to curb the rapid increase of spam. In this artic...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy and AI
سال: 2023
ISSN: ['2666-5468']
DOI: https://doi.org/10.1016/j.egyai.2023.100236